10,980 research outputs found

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    Full text link
    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central black hole with free-fall acceleration. We propose however that the line emission at high, blue-shifted velocities is better explained in terms of entrainment of gas clouds by the jet. This gas is therefore probably collisionally excited as a result of heating due to the intense infrared radiation from the jet, which would explain the strength of this component in Civ relative to Lya. This phenomenon might be a signature of disk-jet interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste

    High-Fidelity Z-Measurement Error Correction of Optical Qubits

    Get PDF
    We demonstrate a quantum error correction scheme that protects against accidental measurement, using an encoding where the logical state of a single qubit is encoded into two physical qubits using a non-deterministic photonic CNOT gate. For the single qubit input states |0>, |1>, |0>+|1>, |0>-|1>, |0>+i|1>, and |0>-i|1> our encoder produces the appropriate 2-qubit encoded state with an average fidelity of 0.88(3) and the single qubit decoded states have an average fidelity of 0.93(5) with the original state. We are able to decode the 2-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 1-qubit decoded states arising from 16 real and imaginary single qubit superposition inputs have an average fidelity of 0.96(3).Comment: 4 pages, 4 figures, comments welcom

    Spectral Properties From Lyman-alpha to H-alpha For An Essentially Complete Sample of Quasars I: Data

    Full text link
    We have obtained quasi-simultaneous ultraviolet-optical spectra for 22 out of 23 quasars in the complete PG-X-ray sample with redshift, z<0.4, and M_B<-23. The spectra cover rest-frame wavelengths from at least Lyman-alpha to H-alpha. Here we provide a detailed description of the data, including careful spectrophotometry and redshift determination. We also present direct measurements of the continua, strong emission lines and features, including Lyman-alpha, SiIV+OIV], CIV, CIII], SiIII], MgII, H-beta, [OIII], He5876+NaI5890,5896, H-alpha, and blended iron emission in the UV and optical. The widths, asymmetries and velocity shifts of profiles of strong emission lines show that CIV and Lyman-alpha are very different from H-beta and H-alpha. This suggests that the motion of the broad line region is related to the ionization structure, but the data appears not agree with the radially stratified ionization structure supported by reverberation mapping studies, and therefore suggest that outflows contribute additional velocity components to the broad emission line profiles.Comment: 42 pages, 10 figures, 13 tables. Accepted by AJ. Supplemental figures not included. Full version available at http://physics.uwyo.edu/~shang/pgxpaper/ShangPaper.pd

    Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548

    Get PDF
    We present a new scheme for modeling the broad line region in active galactic nuclei (AGNs). It involves photoionization calculations of a large number of clouds, in several pre-determined geometries, and a comparison of the calculated line intensities with observed emission line light curves. Fitting several observed light curves simultaneously provides strong constraints on model parameters such as the run of density and column density across the nucleus, the shape of the ionizing continuum, and the radial distribution of the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC 5548, we were able to reconstruct the light curves of four ultraviolet emission-lines, in time and in absolute flux. This has not been achieved by any previous work. We argue that the Balmer lines light curves, and possibly also the MgII2798 light curve, cannot be tested in this scheme because of the limitations of present-day photoionization codes. Our fit procedure can be used to rule out models where the particle density scales as r^{-2}, where r is the distance from the central source. The best models are those where the density scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We have also tested the idea that the spectral energy distribution (SED) of the ionizing continuum is changing with continuum luminosity. None of the variable-shape SED tried resulted in real improvement over a constant SED case although models with harder continuum during phases of higher luminosity seem to fit better the observed spectrum. Reddening and/or different composition seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication in Ap

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap

    Demonstration of a simple entangling optical gate and its use in Bell-state analysis

    Get PDF
    We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realisations, using partially-polarising beamsplitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-Z gate in both continuous-wave and pulsed regimes of operation, fully characterising it in each case using quantum process tomography. We also demonstrate a fully-resolving, nondeterministic optical Bell-state analyser based on this controlled-Z gate. This new architecture is ideally suited to guided optics implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures (low res), some other minor changes. Accepted for publication in PR

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    A simple scheme for expanding photonic cluster states for quantum information

    Get PDF
    We show how an entangled cluster state encoded in the polarization of single photons can be straightforwardly expanded by deterministically entangling additional qubits encoded in the path degree of freedom of the constituent photons. This can be achieved using a polarization--path controlled-phase gate. We experimentally demonstrate a practical and stable realization of this approach by using a Sagnac interferometer to entangle a path qubit and polarization qubit on a single photon. We demonstrate precise control over phase of the path qubit to change the measurement basis and experimentally demonstrate properties of measurement-based quantum computing using a 2 photon, 3 qubit cluster state

    Quantum Non-demolition Measurements on Qubits

    Get PDF
    We discuss the characterization and properties of quantum non-demolition (QND) measurements on qubit systems. We introduce figures of merit which can be applied to systems of any Hilbert space dimension thus providing universal criteria for characterizing QND measurements. We discuss the controlled-NOT gate and an optical implementation as examples of QND devices for qubits. We also discuss the QND measurement of weak values
    corecore